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A chaotic three-dimensional flow can be described through the topological organization of the period-
ic orbits shadowed by an attractor. If only a scalar variable is available, this description requires the
embedding of the data. In this work we report an example in which the reconstructed topology of the

flow depends on the chosen embedding.

PACS number(s): 05.45.+b

I. TOPOLOGICAL ANALYSIS OF DATA

One of the most striking features of nonlinear systems
is the possibility of existence of strange attractors.
Whenever a natural phenomenon displays a chaotic solu-
tion, the repetition of the experiment, even under a well
controlled environment, will give rise to outputs that are
different if the time series data are directly compared.
This observation has guided the research on nonlinear
phenomena. How to build up numbers that let us recover
the idea of reproducibility, even when long term predicta-
bility is lost, has been a key question for the last 15 years.

Recently, a topological approach has been proposed to
deal with this issue [1-3]. Shadowed by a strange attrac-
tor there is a set of periodic orbits which constitutes its
skeleton [4,5]. For three-dimensional (3D) flows (the
minimal dimension in which chaos can take place), those
periodic orbits constitute closed one-dimensional curves
which can be characterized by the way in which they are
knotted [6,7]. The knot type of a periodic orbit is a topo-
logical invariant: as parameters are changed, the orbit
might deform and change in shape, but to change its knot
type a self-intersection would be necessary, violating
determinism (there would be a point with two futures).
Other topological invariants can be computed for period-
ic orbits: if a global Poincaré section exists the braid type
of the orbit is also an invariant. These ideas will be re-
viewed in Sec. II.

This approach has been used in the analysis of a num-
ber of experimental data sets. It has been proven success-
ful in order to validate models for experimental laser
data, fluid data, etc. Many of the data sets analyzed
showed that well known geometric mechanisms were re-
sponsible for the observed chaotic behavior [8-11].

Yet, the implementation of these ideas is not trivial.
Even for reasonably well known systems for which good
models exist, the measurement of all the relevant vari-
ables might not be technically possible. For example, in
the case of the laser with saturable absorber, the measure-
ment of the population inversion is an extremely difficult
task (the natural variable to be measured in this problem
is the output intensity). In all the examples quoted so far,
the problem has been solved by building a three-
dimensional multivariate environment from the measured
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scalar data. If the resulting flow has no self-intersections
and is smooth, we can think of the reconstructed flow as
an embedding of the data.

It is important to realize that despite early hopes, no
proof could be found that different good embeddings
would give rise to a unique characterization of the flow,
and therefore the best that can be said about the system is
that one characterizes topologically the pair.data embed-
ding. Actually, it is the purpose of this work to show an
example of a parametrically controlled family of embed-
dings that give rise to nonequivalent topological invari-
ants for the orbits buried within a strange attractor.

This work is organized as follows. In Sec. II, topologi-
cal invariants are defined for periodic orbits of three di-
mensional dynamical systems. In Sec. III the model un-
der study is presented. Section IV deals with the problem
of finding good embeddings for the flow generated by the
model under study, as well as with the topological invari-
ants of the orbits buried within the strange attractor
which end up being embedding dependent. Section V con-
tains the discussion of the results and the conclusions.

II. KNOTS AND BRAIDS

As mentioned in the previous section, periodic solu-
tions of a 3D dynamical system are closed 1D curves em-
bedded in a 3D manifold. This is precisely the definition
of a knot [13]. If a given closed curve can be deformed
into a circle (without self-cuttings) it is called a trivial
knot. If that is not the case, it will belong to another
class of knots, which will consist of all the closed curves
which might be deformed (without self-cuttings) into
each other.

The reason for studying knots in the framework of 3D
systems is the following. If an orbit is a solution of a
dynamical system which belongs to a parametrized fami-
ly, the control parameters can be changed, and eventually
the orbit might disappear. But as discussed in Sec. I as
long as the orbit exists, the knot type will not change [7].

A crucial question arises: given a knot, is it possible to
compute some number which would indicate to which
class it belongs? The question has attracted much
research, and the answer is negative. There are a few in-
variants such that if they are computed for different or-
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bits and give different results, indicate that the knots are
not equivalent (not deformable into each other). But the
inverse is not true. For every invariant proposed so far in
the literature, there are examples of knots which are not
equivalent and yet are associated to the same invariant.

Whenever a global Poincare section exists, a periodic
orbit will intersect this section in a finite number of
points n. One can visualize then a periodic orbit as a set
of strands emerging from the » points and terminating in
the same set of n points after one excursion to the com-
plement of the Poincaré section in the phase space, i.e., a
braid [7].

Two braids are equivalent if we can deform one into
the other with the end points fixed and without making a
strand cross through another [13]. We shall see now that
it is possible to write an algebraic expression for the braid
in terms of generators, and that the geometric equivalence
restriction mentioned above can be translated into alge-
braic relationships between the generators. Every braid
can be expressed as an ordered set of symbols o,
03 ---,0,_, and their inverses o; L0, ...,0;}
Each of the symbols o; (o;!) represents a piece of a
braid in which the ith strand crosses over (under) the
(i +1)th one in a given regular two-dimensional (2D)
projection, as displayed in Fig. 1. Notice that o;0; ! cor-
responds to two consecutive crossings in which (1) the
point i is connected to i +1 with a strand that crosses
over the one connecting i +1 with i and (2) the point
i +1 is connected back to i with a strand going over the
one connecting the point i with the point i +1. Observ-
ing the resulting braid it is easy to realize that it is possi-
ble to deform it by pulling the strand i—i +1—i over
the strand i +1—i—i+1. The resulting braid consists
of a set of parallel strands with no crossings. Associating
this braid to the “identity” I,, it is possible to translate
our geometric equivalence relationship into the following
algebraic one:

T X
]

FIG. 1. Braid generators (top) and braid product (bottom).

»Op—1-

o0 =1, . 2.1

There are two algebraic relations that correspond to
the geometric moves allowed within a class of braids:

0i0;+10;=0;410;0;41 » 2.2)

Y(i) (a)

FIG. 2. A well ordered orbit (a), a map induced by the well
ordered orbit (b), a badly ordered orbit (c), and a map induced
by the badly ordered orbit (d).
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Notice that two braids corresponding to periodic orbits
of the same period do not correspond necessarily to the
same class of braids. In Fig. 2, two period three orbits
are displayed. The one in Fig. 2(a) (with generators
o705 !) can be thought of as a periodic orbit of a rigid
rotation of a disk, while the braid in Fig. 2(b) cannot. Let
us elaborate this observation. Let us imagine a map that
has the first orbit as a solution. For example, let us draw
a circle on a Poincaré section such that it encloses the
three points in which the periodic orbit crosses the sec-
tion. Now if we follow the evolution of this circle in the
“less complicated way,” its image will be a rotated circle
[Fig. 2(c)]. The situation is qualitatively different for the
second orbit. If we repeat the procedure described above,
the image of the initial circle will be a stretched and
twisted curve [Fig. 2(d)]. This suggests that a chaotic dy-
namics might be coexisting with our non rotation compa-
tible braid [14]. The identification of a badly ordered or-
bit and the statement that its presence implies a chaotic
dynamics has been reported in [3,8].

Also notice that both orbits are trivial knots. This ob-
servation makes it clear that whenever a global Poincaré
section exists, the braid type of an orbit carries more in-
formation that its knot type [15].

III. THE MODEL

The dynamical system analyzed in this work is a
parametrically forced version of the normal form equa-
tions for the Takens Bogdanov bifurcation:

X'=v,
Y'=u[l+ecos(¢p)]X +v[1+ecos($)]Y —X3+X2Y ,
=QqQ . (3.1

This study is motivated by the existence of a qualitative
agreement between the orbits extracted from a well sam-
pled time series of the experiment reported in [12] and
the solutions of the model [16]. The variable X describes
the behavior of a symmetry breaking parameter measur-
able from the pattern, Y stands for the time derivative of
that variable, and the forcing term phenomenologically
accounts for the dynamics of the effective difference of
temperature across the convective cell.

Let us analyze some features of the solutions of the
model. If the parameter €=0, the usual Takens Bog-
danov scenario is obtained. This consists of the following
dynamical behavior as the parameter pu,; is increased, for
a fixed negative value of u,. For u,<0, a stable fixed
point is obtained. For O<u;<—v, two asymmetric
stable fixed points are found which are born in a pitch-
fork bifurcation from the symmetric fixed point at (0,0).
At p=—v, two Hopf bifurcations from the asymmetric
fixed points give rise to periodic limit cycles. The effect
of taking € < >0 close to u= —w is clear from Fig. 3. As
the Hopf frequency is preserved, the flow appears as com-
plex oscillations around oscillations. For the strange at-
tractor displayed in Fig. 3, it is possible to take a global
Poincaré section consisting of a half plane with the bor-

Y (i)
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X()
FIG. 3. Strange attractor solution of the numerical model.

X (i) vs Y (i) as defined in (4.1)—arbitrary units. The integra-
tion was performed with £ =1.0434, €=0.45, and w=0.399.

der perpendicular to the plane (X,Y). Notice that this
Poincaré section is not the stroboscopic section that cor-
responds to inspect the system at time intervals equal to
the forcing period.

A few remarks should be stated at this point. The
phase space of this problem is R2XS!. It is therefore
possible to think of the knot properties of the periodic or-
bits as invariants. Moreover, if we take a stroboscopic
map, the braid properties of the orbits can be computed
as discussed in Sec. II. Yet, if we take the global Poin-
caré section indicated in Fig. 3, the characterization of
the braids is a subtle issue: being the variable that deter-
mines the overcrossings and undercrossings ¢ €S, the
rules between generators are different than the ones re-
ported in Sec. II. In any case, the strategy followed in
this work consists in taking one variable from the simula-
tions of the system of equations above, and treat this vari-
able as a scalar one. An embedding in R” will be per-
formed, and we will show that it is possible to embed the
data in R3.

IV. EMBEDDINGS AND RECONSTRUCTED FLOWS

In natural sciences, it is typical to face problems for
which even the number of relevant variables is not
known. Moreover, once they are discovered, it might not
be easy to measure them all. Therefore, it is important to
obtain information from a scalar time series data. This
has given Whitney’s original works a remarkable pres-
ence in the last ten years. Whitney proved that a generic
smooth map from a d-dimensional manifold M to R??*!
is a diffefomorphism on M [17]. Takens and Packard built
a specific and practical map (the delay-coordinate map)
that allows us to construct easily a multivariate environ-
ment from scalar data [18]. Recently, Sauer extended
these ideas (from manifolds) to compact sets, and (from
generic) to probability-one maps [19,20].

The results mentioned above give rise to upper bounds
for the dimensionality of the embeddings necessary to
embed a manifold or a compact set from their dimen-
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sionality. Another strategy in order to build a multivari-
ate environment that is a good embedding is through the
construction of a prescription satisfying the following
two features: (1) the map should be one to one, and (2)
the map should preserve differential information. The
one to one property is conceptually crucial. Our idea
that the embedding space is a phase space is based on this
property. The state of a deterministic system, and there-
fore its unique future must be completely specified by a
point in the phase space. In other words, no self-
intersections should be found in the reconstructed flow.

Following these ideas, we built a code that checks for
self-intersections and ‘“‘cusps” in a 3D flow. Dividing the
phase space into boxes, and adjusting their sizes so that
just a few points fall within each box (order of 10), the
code follows the evolution of those initial conditions.
Then, the angles between the speeds at the points are
computed. Self-intersections or cusps will be detected
whenever large angles appear. This strategy for con-
structing an embedding follows in spirit the “false neigh-
bors method” [20].

We have analyzed the data file whose 2D projection is
displayed in Fig. 3. A family of parametric 3D embed-
dings was constructed

X)) —>(X0),[X()—X(i—5)],X(i—7))

=(X(),Y(D),Z()) 4.1

and the number of self-intersections was plotted as a
function of 7. The results are summarized in the histo-
gram shown in Fig. 4. Notice that there is an island of
values of 7, 110<7<210 for which the reconstructed
multivariate environment fails to be an embedding, as the
flow self-intersects. For 7> 250, self-intersections show
up again. That leaves us with at least two intervals of 7
such that a three-dimensional embedding for the data is
possible for any 7 included in them. Now, a natural ques-
tion arises: are the two reconstructed flows equivalent?
In order to investigate this issue, close returns in the
data were found which approximate unstable periodic or-

60 80 100 120 140 160 180 200 220

7

FIG. 4. Number of self-intersections of the flow as 7 is
changed. The regions with no self-intersections give rise to
deterministic multivariate environments.
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bits buried within the strange attractor [3]. In Figs. 2(a)
and 2(b) the lowest periodic orbit found in the data file
under study is shown. In both figures, the diagrams cor-
respond to the projection of the orbits in the (X,;,X,)
planes, and the deleted segments indicate the undercross-
ings. In Fig. 2(a), the diagram corresponds to the orbit
embedded with a delay parameter 7 for the third variable
that belongs to the first island (7=60), while the figure in
2(b) corresponds to an embedding parameter correspond-
ing to the second island (7=220). Note that all the
crossings but one coincide. What does this say about the
orbits?

To characterize these two orbits, we can think of them
as knots, or we can take advantage of the existence of a
global Poincaré section and construct braid invariants.
In terms of knot properties, both orbits correspond to
trivial knots. In a more precise terminology, the recon-
structed orbit displayed in Fig. 2(a) is regular isotopic to
the unknot, while the orbit in Fig. 2(b) is ambient isotopic
to the unknot. But if we look at the orbits as braids,
there is a seemingly dramatic difference between the two
orbits. The orbit shown in Fig. 2(b) can be characterized
(following the procedures in Sec. II) as a badly ordered
orbit B(o,,0,)=0; ‘o, while the one in Fig. 2(a) is a
well ordered orbit with B(o,0,)=0; '0;!. Why was
there a change in the knot organization as the embedding
parameter was changed? Is there a contradiction in this
result?

In order to address the first question we will refer to
Fig. 5. This figure shows an enlargement of a recon-
structed flow, for a delay parameter 7=130. Notice that
according to the histogram shown in Fig. 4, self-
intersections for the reconstructed flow are found. The
enlargement corresponds to the region of the reconstruct-
ed space where those intersections take place. In Fig. 3, a
square frame indicates its position with respect to the to-
tal attractor. Now it is possible to understand why the
reconstructed orbits changed their braid types. The flow
rests mainly in a three branched 2D manifold, and for
different values of the embeddings, one branch crosses
over another one.

B oR R
PR N W e

1.4
X(j)
FIG. 5. One branch of the attractor crossing through anoth-
er one when a 7 was used in order to build the multivariate envi-
ronment such that self-intersections existed (7=130). The

graph corresponds to X (i), Y (i), Z (i) as defined in (4.1). The
dark points indicate their locations.
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FIG. 6. The Poincaré section of the chaotic flow displayed in
Fig. 3.

There is an apparent contradiction between the predic-
tions of both flow reconstructions. In one case the period
three orbit B(o,,0,)=0; !0, implies chaos and in the
other case B(0,,0,)=0 'o; ! does not.

The contradiction can be resolved as follows.

(1) A periodic orbit p, can force a positive topological
entropy because of the stretching and bending that its
braid type forces upon the complement of the orbit in a
disk, D —p [see Fig. 2(d)].

(2) The strange attractor (if it exists) is supported in
D —p. Qualitative maps of the disk onto the disk are
sketched in Figs. 2(c) and 2(d) for the two braids here
considered.

(3) In the present case the attractor in the Poincaré sec-
tion lies in three disconnected pieces and no “experimen-
tal” points can be found outside these three pieces. The
full attractor is inside a tube braided as the period three
orbits (see Fig. 6).

(4) The chaos predicted (or not) by one or the other
embedding corresponds to an invariant set that is sup-
ported in the part of the disk for which we have no infor-
mation. Hence, each prediction relies on the hypothesis
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that the embedding can be extended to the disk. Clearly,
both of them cannot be true since we would then have a
real contradiction; perhaps none of them can be extended
to the full disk.

It is then clear that our prediction of chaos or no chaos
depends on our additional hypothesis every time the
strange attractor implied is supported in a set disjoint of
the sampled set. The moral of the story is that every time
we predict a positive topological entropy using topologi-
cal methods there is a need to verify that the detected
strange attractor lies at least partially within a region of
phase space well represented in our data set and that the
reconstructed manifold can be legitimately considered a
deformed disk.

V. CONCLUSIONS

We have built an example in which the periodic orbits
reconstructed from a scalar time series are characterized
by embedding dependent topological numbers. For a
period three close return, some embeddings allow us to
characterize it as a badly ordered orbit. Other embed-
dings of the scalar close return give rise to well ordered
orbits. This apparent contradiction is rooted in the fact
that the full attractor is inside a braided tube, and there-
fore no complete information is available on the comple-
ment of the orbit in a disk.

The example reported in this work provides a negative
answer to the following conjecture: ‘“the topological
structure of a chaotic flow is embedding independent,” at
least to the degree to which this example is applicable.

The implication of chaos by badly ordered orbits has
been invoked several times in the literature. It is likely
that in those cases the embeddings could be extended to
whole disks, but this work should raise a red flag on the
black-box-like application of topological tools to analyze
data.
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